These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of low (< or = 1 mM) phosphate concentrations in regulation of mitochondrial permeability: modulation of matrix free Ca2+ concentration. Author: Kushnareva YE, Haley LM, Sokolove PM. Journal: Arch Biochem Biophys; 1999 Mar 01; 363(1):155-62. PubMed ID: 10049510. Abstract: Under a variety of conditions, the permeability of the inner mitochondrial membrane to small solutes can be nonselectively increased. A classic mitochondrial permeability transition (MPT) was originally identified based on its dependence on matrix Ca2+ and its extreme sensitivity to cyclosporin A (CsA). It is now clear, however, that several additional and distinct processes can also produce increases in mitochondrial permeability. Both mitochondrial signal peptides (P. M. Sokolove and K. W. Kinnally, 1996, Arch. Biochem. Biophys. 336, 69-76) and butylated hydroxytoluene (BHT) (P. M. Sokolove and L. M. Haley, 1996, J. Bioenerg. Biomembr. 28, 199-206), for example, induce permeability increases that are relatively CsA insensitive and that persist in the presence of EGTA. Inorganic phosphate (Pi) appears to play a key role in each of these permeability increases. High (>1 mM) Pi levels facilitate the classic MPT, while Pi concentrations below 1 mM stimulate the permeability increase induced by signal peptides and inhibit that triggered by BHT. The effect of high Pi concentrations can most probably be explained by exchange of the anion for matrix ADP and the resulting alleviation of ADP-mediated inhibition of the MPT (R. G. Lapidus and P. M. Sokolove, 1994, J. Biol. Chem. 269, 18931-18936). In the experiments reported here, the mechanisms underlying the effects of low Pi concentrations on mitochondrial permeability were investigated, by monitoring mitochondrial volume, with the following results: (1) A hitherto unrecognized ability of Pi (<1 mM) to increase the lag preceding induction of the classic MPT by diamide, phenylarsine oxide, and t-butylhydroperoxide was identified. (2) Data were obtained suggesting that all of the effects of low Pi concentration, stimulation of signal peptide-induced swelling, blockade of BHT-induced swelling, and delay of the classic MPT, can be attributed to the capacity of the anion to complex Ca2+ in the mitochondrial matrix. (3) Differences in the responses of these three systems for enhancing mitochondrial permeability to experimental manipulation indicate that matrix Ca2+ plays more than one role in the regulation of mitochondrial permeability. An additional important finding is the observation that failure of EGTA to alter a mitochondrial process need not mean that the process is Ca2+ independent. In a multicompartment system, absence of EGTA action may instead reflect failure of the chelator to gain access to regulatory Ca2+.[Abstract] [Full Text] [Related] [New Search]