These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Masking of forskolin-induced long-term potentiation by adenosine accumulation in area CA1 of the rat hippocampus. Author: Lu KT, Gean PW. Journal: Neuroscience; 1999 Jan; 88(1):69-78. PubMed ID: 10051190. Abstract: At hippocampal Schaffer collateral-CA1 synapses, activation of beta-adrenergic receptors and adenylyl cyclase increases transmitter release. However, this effect is transient, which is in contrast to that seen at mossy fiber-CA3 synapses, where activation of cyclic-AMP-dependent protein kinase results in long-lasting facilitation of transmitter release, a phenomenon known as a presynaptic form of long-term potentiation. The present study was aimed at investigating whether forskolin, an adenylyl cyclase activator, could produce long-term effects at the Schaffer collateral-CA1 synapses using extracellular recording techniques. As has been reported previously, forskolin persistently increased the amplitude of evoked population spikes without having a long-term effect on the field excitatory postsynaptic potentials. However, under the conditions where adenosine A1 receptors are inhibited, cyclic-AMP metabolism is disrupted or the transport of cyclic-AMP is blocked, forskolin induces long-term potentiation. Forskolin-induced potentiation is associated with a decrease in paired-pulse facilitation and is blocked by the cyclic-AMP-dependent protein kinase inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate. Activation of N-methyl-D-aspartate receptors is not required for forskolin-induced long-term potentiation, because pretreatment of slices with the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate did not prevent forskolin-induced potentiation. These results suggest that blockade of adenosine A1 receptors unmasks forskolin-induced long-term potentiation, and activation of cyclic-AMP-dependent protein kinase induces a form of long-term potentiation which is different from that induced by tetanic stimulation.[Abstract] [Full Text] [Related] [New Search]