These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aminopyridazines as acetylcholinesterase inhibitors.
    Author: Contreras JM, Rival YM, Chayer S, Bourguignon JJ, Wermuth CG.
    Journal: J Med Chem; 1999 Feb 25; 42(4):730-41. PubMed ID: 10052979.
    Abstract:
    Following the discovery of the weak, competitive and reversible acetylcholinesterase (AChE)-inhibiting activity of minaprine (3c) (IC50 = 85 microM on homogenized rat striatum AChE), a series of 3-amino-6-phenylpyridazines was synthesized and tested for inhibition of AChE. A classical structure-activity relationship exploration suggested that, in comparison to minaprine, the critical elements for high AChE inhibition are as follows: (i) presence of a central pyridazine ring, (ii) necessity of a lipophilic cationic head, (iii) change from a 2- to a 4-5-carbon units distance between the pyridazine ring and the cationic head. Among all the derivatives investigated, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine (3y), which shows an IC50 of 0.12 microM on purified AChE (electric eel), was found to be one of the most potent anti-AChE inhibitors, representing a 5000-fold increase in potency compared to minaprine.1
    [Abstract] [Full Text] [Related] [New Search]