These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynorphin A increases substance P release from trigeminal primary afferent C-fibers. Author: Arcaya JL, Cano G, Gómez G, Maixner W, Suárez-Roca H. Journal: Eur J Pharmacol; 1999 Jan 29; 366(1):27-34. PubMed ID: 10064148. Abstract: Dynorphin A-(1-17) has been found to produce spinal antianalgesia and allodynia. Thus, we studied whether dynorphin A-(1-17) modulates substance P release evoked by the C-fiber-selective stimulant capsaicin (1 microM) from trigeminal nucleus caudalis slices. Very low concentrations of dynorphin A-(1-17) (0.01-0.1 nM) strongly facilitated capsaicin-evoked substance P release. This dynorphin A-(1-17) effect was not blocked by the opioid receptor antagonists naloxone (100 nM), beta-funaltrexamine (20 nM), naloxonazine (1 nM), nor-binaltorphimine (3 nM) and ICI 174,864 (N,N-dialyl-Tyr-Aib-Phe-Leu; 0.3 microM). Yet, the effect of dynorphin A-(1-17) was blocked by the NMDA receptor antagonist MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-10-imine maleate; 0.3 microM). Neonatal treatment with capsaicin (50 mg/kg s.c.), which destroys substance P-containing primary afferents, abolished the excitatory effect of dynorphin A-(1-17) on K+-evoked substance P release. In conclusion, dynorphin A-(1-17) increases substance P release from C-fibers by the activation of NMDA receptors which supports the involvement of presynaptic mechanisms in dynorphin-induced antianalgesia and allodynia.[Abstract] [Full Text] [Related] [New Search]