These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Maturational changes in cerebral lactate and acid clearance following ischemia measured in vivo using magnetic resonance spectroscopy and microdialysis.
    Author: Corbett R, Laptook A, Kim B, Tollefsbol G, Silmon S, Garcia D.
    Journal: Brain Res Dev Brain Res; 1999 Mar 12; 113(1-2):37-46. PubMed ID: 10064872.
    Abstract:
    Intraischemic hyperglycemia has different effects on neurologic outcome in mature vs. immature brain, and may reflect differences in the extent or duration of cerebral lactic acidosis. We examined the hypotheses that post-ischemic lactate and acid clearance rates depend on the severity of intraischemic cerebral acidosis, and that rates of clearance change as a function of brain maturation. In vivo 31P and 1H magnetic resonance spectroscopy (MRS) was used to compare intracellular acid and lactate clearance rates in newborn and 1-month old swine following a 14-min episode of transient near-complete global ischemia. In the same animals, in vivo microdialysis was used to determine if extracellular lactate clearance changed as a function of cerebral lactic acidosis or differed between age groups following ischemia. Plasma glucose concentration was altered in individual animals to study a range of intraischemic cerebral lactic acidosis. For both age-groups, maximal brain acidosis and lactosis occurred in the post-ischemia interval, indicating a delay in the re-establishment of oxidative metabolism following ischemia. Clearance half-lives of both cerebral acidosis and lactosis increase as a function of increased intraischemic cerebral acidosis. For either age group, the clearance half-life for acidosis was faster than the half-life for lactate. However, the subgroup of 1-month old swine who experienced severe cerebral acidosis (i.e., pH<6.1) had a longer cerebral lactate clearance half-life as compared to the subgroup of newborn animals with a similar severity of acidosis. In both age groups, there were comparable maximal increases in extracellular lactate concentrations in the post-ischemic period and similar rates of decline from the maximum. These results demonstrate that post-ischemic lactate and acid clearance are altered by the extent of intraischemic acidosis, and the extent of post-ischemic uncoupling between brain acid and lactate clearance increases with advancing age. The transmembrane clearance of lactate was not a prominent mechanism that differentiated lactate clearance rates between newborn and 1-month old swine.
    [Abstract] [Full Text] [Related] [New Search]