These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Altered expression of the IGF-1 receptor in a tamoxifen-resistant human breast cancer cell line.
    Author: Parisot JP, Hu XF, DeLuise M, Zalcberg JR.
    Journal: Br J Cancer; 1999 Feb; 79(5-6):693-700. PubMed ID: 10070856.
    Abstract:
    The relationship between oestrogen (E2) and insulin-like growth factor-one (IGF-1) was examined in both tamoxifen-sensitive (MCF 7/5-21) and tamoxifen-resistant (MCF 7/5-23) subclones of the MCF 7 cell line. Both subclones were grown in defined, serum-free (SF) medium over a period of 7 days with the addition of E2 or IGF-1 or a combination of both agents. Growth of both MCF 7/5-21 and 7/5-23 cells was stimulated (245% and 350%, respectively) by E2. However, only the growth of MCF 7/5-23 cells was stimulated (266%) by IGF-1. A combination of E2 and IGF-1 significantly enhanced MCF 7/5-21 and 7/5-23 cell growth (581% and 695%, respectively). E2-induced IGF-1 receptor (IGF-1R) levels (as measured by 125I-IGF-1 binding and Northern analyses) in only MCF 7/5-23 cells. This effect was partially inhibited by tamoxifen. In medium containing serum, the growth of only the MCF 7/5-23 cells was significantly inhibited by the IGF-1R monoclonal antibody, alphaIR-3. The detection of E2-induced expression of IGF-2 using RT-PCR was demonstrated in the MCF 7/5-23 cells. These experiments indicate that E2 may sensitize tamoxifen-resistant MCF 7/5-23 cells to the growth stimulatory actions of IGF-2 via up-regulation of the IGF-1R and describes a cell-survival mechanism that may manifest itself as tamoxifen resistance.
    [Abstract] [Full Text] [Related] [New Search]