These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of beta-myosin heavy chain gene expression in pressure overload rat heart by losartan and captopril. Author: Ling Q, Chen TH, Guo ZG. Journal: Zhongguo Yao Li Xue Bao; 1997 Jan; 18(1):63-6. PubMed ID: 10072897. Abstract: AIM: To study the effects of losartan and captopril on beta-myosin heavy chain (MHC), and alpha-MHC gene expression. METHODS: Pressure overload was produced by abdominal aortic coarctation (AAC) in rats. alpha- and beta-MHC mRNA were measured by Northern blot. RESULTS: In left ventricular myocardium of sham-operated rats, the alpha-MHC mRNA predominated, while the beta-MHC mRNA was only detectable. In response AAC, there was a 70-fold increase in the beta-MHC mRNA (P < 0.01), while alpha-MHC mRNA reduced to 26% (P < 0.01). Losartan (3 mg.kg-1.d-1, i.g. for 11 d) to AAC rats caused inhibitions of beta-MHC by 96% and alpha-MHC by 86% gene expression without lowering blood pressure. A reduction in beta-MHC mRNA was also seen in captopril-treated rats (30 mg.kg-1.d-1, i.g. for 11 d), but the inhibitory effect of captopril on alpha-MHC mRNA was less than that of losartan (44% vs 86%, P < 0.05). CONCLUSIONS: The shift of MHC isoform induced by pressure overload is due to up-regulation of beta-MHC and down-regulation of alpha-MHC gene expression. Inhibition of beta-MHC gene expression by losartan is achieved primarily by direct blockade of angiotensin II type I receptors in the myocardium, independent on hemodynamics.[Abstract] [Full Text] [Related] [New Search]