These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coordination between Ca2+ release and subsequent re-uptake in the sarcoplasmic reticulum.
    Author: Saiki Y, Ikemoto N.
    Journal: Biochemistry; 1999 Mar 09; 38(10):3112-9. PubMed ID: 10074365.
    Abstract:
    We here report the results of our recent effort to produce, in the isolated sarcoplasmic reticulum (SR), a biphasic Ca2+ release and Ca2+ re-uptake transient and to resolve the kinetic relationship between Ca2+ release and re-uptake of the released Ca2+. Ca2+ release from the SR was induced by polylysine (the ryanodine receptor-specific Ca2+ release trigger) at various levels of calcium loading, or at various doses of the trigger. The changes in the Ca2+ concentration in the reaction solution and in the lumenal Ca2+ concentration were determined by stopped-flow spectroscopy using fluo-3 and mag-fura-2AM, respectively. At higher levels of calcium loading (>150 nmol/mg), polylysine induced monophasic Ca2+ release curves (without an appreciable re-uptake phase) as reported in most studies in the literature. However, lowering the calcium loading level to an intermediate range (100-150 nmol/mg) produced the desired biphasic transient curves consisting of Ca2+ release and Ca2+ re-uptake phases. Under these conditions, the increase in the polylysine concentration resulted in the increase of both the rate of Ca2+ release and that of re-uptake of the released Ca2+. The maximal rate of Ca2+ release and that of re-uptake showed a parallel relationship in the polylysine concentration range of 0-10 microM. This indicates that Ca2+ release from the SR and re-uptake of the released Ca2+ via the SR Ca2+ pump are well-coordinated processes. The changes in the lumenal Ca2+ concentration during the release and re-uptake reaction were monitored at an optimum level of calcium loading while clamping the extravesicular Ca2+ concentration at a constant value. There was again a tight correlation between Ca2+ release (decrease of the lumenal Ca2+ concentration) and re-uptake (increase of the lumenal Ca2+ concentration), indicating that acceleration of the re-uptake is controlled by the rate of decrease of the lumenal Ca2+ concentration. We propose that one of the mechanisms, by which the mode of coordination between the two components of the biphasic Ca2+ transient (viz. Ca2+ release via the ryanodine receptor and Ca2+ re-uptake via the SR Ca2+ pump) is controlled, is the change in the Ca2+ concentration gradient across the SR membrane.
    [Abstract] [Full Text] [Related] [New Search]