These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Diabetes abolishes the vascular protective effects of estrogen in female rats.
    Author: Bolego C, Cignarella A, Zancan V, Pinna C, Zanardo R, Puglisi L.
    Journal: Life Sci; 1999; 64(9):741-9. PubMed ID: 10075106.
    Abstract:
    Estrogen is known to exert a protective effect against cardiovascular disease. However, women with diabetes have three times the risk as compared with age-matched non-diabetic women. Our previous study on aortic rings of ovariectomized (OVX) female rats treated with 17-beta-estradiol (E2) demonstrated that the beneficial effect of estrogen is related to the basal release of NO from endothelial cells. In the present study, in order to understand why estrogen protection is abolished in diabetes, we tested vascular responses in OVX, streptozotocin-diabetic female rats and their non-diabetic controls receiving or not E2 replacement. Concentration-response curves to norepinephrine (NE) showed attenuation of the contractile response in E2-treated diabetic, with respect to non-diabetic preparations. This response was further impaired in diabetic, E2-deprived rats. The basal release of NO, as evaluated by concentration-related responses to N(G)-methyl-L-arginine acetate in NE-precontracted aortic rings, was found to be impaired in E2-treated diabetic rats, no further effect being induced by E2 deprivation. The endothelium-dependent relaxation produced by carbachol did not change between groups, whereas the relaxation produced by histamine was enhanced by both diabetes and E2 deprivation. However, E2 treatment counteracted the response to histamine only in preparations from non-diabetic animals. Finally, the relaxation induced by sodium nitroprusside, an endothelium-independent relaxant agent, was comparable between groups. These findings suggest that the lack of protective effects of estrogen in diabetes may be mainly ascribed to the failure of estrogen to reverse the impaired basal release of NO and the abnormal relaxation to histamine, which are observed in the aorta of diabetic rats.
    [Abstract] [Full Text] [Related] [New Search]