These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface.
    Author: Murai T, Ueda M, Shibasaki Y, Kamasawa N, Osumi M, Imanaka T, Tanaka A.
    Journal: Appl Microbiol Biotechnol; 1999 Jan; 51(1):65-70. PubMed ID: 10077821.
    Abstract:
    The construction of a whole-cell biocatalyst with its sequential reaction has been performed by the genetic immobilization of two amylolytic enzymes on the yeast cell surface. A recombinant strain of Saccharomyces cerevisiae that displays glucoamylase and alpha-amylase on its cell surface was constructed and its starch-utilizing ability was evaluated. The gene encoding Rhizopus oryzae glucoamylase, with its own secretion signal peptide, and a truncated fragment of the alpha-amylase gene from Bacillus stearothermophilus with the prepro secretion signal sequence of the yeast alpha factor, respectively, were fused with the gene encoding the C-terminal half of the yeast alpha-agglutinin. The constructed fusion genes were introduced into the different loci of chromosomes of S. cerevisiae and expressed under the control of the glyceraldehyde-3-phosphate dehydrogenase promoter. The glucoamylase and alpha-amylase activities were not detected in the culture medium, but in the cell pellet fraction. The transformant strain co-displaying glucoamylase and alpha-amylase could grow faster on starch as the sole carbon source than the transformant strain displaying only glucoamylase.
    [Abstract] [Full Text] [Related] [New Search]