These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Early growth response factor-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2.
    Author: Santiago FS, Lowe HC, Day FL, Chesterman CN, Khachigian LM.
    Journal: Am J Pathol; 1999 Mar; 154(3):937-44. PubMed ID: 10079272.
    Abstract:
    Cell migration and proliferation that follows injury to the artery wall is preceded by signaling and transcriptional events that converge at the promoters of multiple genes whose products can influence formation of the neointima. Transcription factors, such as early growth response factor-1 (Egr-1), with nucleotide recognition elements in the promoters of many pathophysiologically relevant genes, are expressed at the endothelial wound edge within minutes of injury. The mechanisms underlying the inducible expression of Egr-1 in this setting are not clear. Understanding this process would provide important mechanistic insights into the earliest events in the response to injury. In this report, we demonstrate that fibroblast growth factor-2 (FGF-2) is released by injury and that antibodies to FGF-2 almost completely abrogate the activation and nuclear accumulation of Egr-1. FGF-2-inducible egr-1-promoter-dependent expression is blocked by PD98059, a specific inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK)-1/2 (MEK-1/2), as well as by dominant negative mutants of ERK-1/2. Inducible ERK phosphorylation after injury is dependent on release and stimulation by endogenous FGF-2. Antisense oligonucleotides directed at egr-1 mRNA suggest that Egr-1 plays a necessary role in endothelial repair after denudation of the monolayer. These findings demonstrate that inducible Egr-1 expression after injury is contingent on the release and paracrine action of FGF-2.
    [Abstract] [Full Text] [Related] [New Search]