These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resolution of the paradox of red cell shape changes in low and high pH.
    Author: Gedde MM, Yang E, Huestis WH.
    Journal: Biochim Biophys Acta; 1999 Mar 04; 1417(2):246-53. PubMed ID: 10082800.
    Abstract:
    The molecular basis of cell shape regulation in acidic pH was investigated in human erythrocytes. Intact erythrocytes maintain normal shape in the cell pH range 6.3-7.9, but invaginate at lower pH values. However, consistent with predicted pH-dependent changes in the erythrocyte membrane skeleton, isolated erythrocyte membranes evaginate in acidic pH. Moreover, intact cells evaginate at pH greater than 7.9, but isolated membranes invaginate in this condition. Labeling with the hydrophobic, photoactivatable probe 5-[125I]iodonaphthyl-1-azide demonstrated pH-dependent hydrophobic insertion of an amphitropic protein into membranes of intact cells but not into isolated membranes. Based on molecular weight and on reconstitution experiments using stripped inside-out vesicles, the most likely candidate for the variably labeled protein is glyceraldehyde-3-phosphate dehydrogenase. Resealing of isolated membranes reconstituted both the shape changes and the hydrophobic labeling profile seen in intact cells. This observation appears to resolve the paradox of the contradictory pH dependence of shape changes of intact cells and isolated membranes. In intact erythrocytes, the demonstrated protein-membrane interaction would oppose pH-dependent shape effects of the spectrin membrane skeleton, stabilizing cell shape in moderately abnormal pH. Stabilization of erythrocyte shape in moderately acidic pH may prevent inappropriate red cell destruction in the spleen.
    [Abstract] [Full Text] [Related] [New Search]