These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The alpha-helical domain of Galphat determines specific interaction with regulator of G protein signaling 9. Author: Skiba NP, Yang CS, Huang T, Bae H, Hamm HE. Journal: J Biol Chem; 1999 Mar 26; 274(13):8770-8. PubMed ID: 10085118. Abstract: RGS proteins (regulators of G protein signaling) are potent accelerators of the intrinsic GTPase activity of G protein alpha subunits (GAPs), thus controlling the response kinetics of a variety of cell signaling processes. Most RGS domains that have been studied have relatively little GTPase activating specificity especially for G proteins within the Gi subfamily. Retinal RGS9 is unique in its ability to act synergistically with a downstream effector cGMP phosphodiesterase to stimulate the GTPase activity of the alpha subunit of transducin, Galphat. Here we report another unique property of RGS9: high specificity for Galphat. The core (RGS) domain of RGS9 (RGS9) stimulates Galphat GTPase activity by 10-fold and Galphai1 GTPase activity by only 2-fold at a concentration of 10 microM. Using chimeric Galphat/Galphai1 subunits we demonstrated that the alpha-helical domain of Galphat imparts this specificity. The functional effects of RGS9 were well correlated with its affinity for activated Galpha subunits as measured by a change in fluorescence of a mutant Galphat (Chi6b) selectively labeled at Cys-210. Kd values for RGS9 complexes with Galphat and Galphai1 calculated from the direct binding and competition experiments were 185 nM and 2 microM, respectively. The gamma subunit of phosphodiesterase increases the GAP activity of RGS9. We demonstrate that this is because of the ability of Pgamma to increase the affinity of RGS9 for Galphat. A distinct, nonoverlapping pattern of RGS and Pgamma interaction with Galphat suggests a unique mechanism of effector-mediated GAP function of the RGS9.[Abstract] [Full Text] [Related] [New Search]