These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mature hippocampal astrocytes exhibit functional metabotropic and ionotropic glutamate receptors in situ. Author: Shelton MK, McCarthy KD. Journal: Glia; 1999 Mar; 26(1):1-11. PubMed ID: 10088667. Abstract: Astrocytes closely contact neurons where they respond to neuronally released glutamate in immature brain slices. In previous studies, neither metabotropic nor ionotropic glutamate receptor-mediated responses were detected by imaging Ca2+ in astrocytes from mature (P21-P42) animals, suggesting astrocyte glutamate receptors only contribute to hippocampus physiology during development. In contrast to Ca2+ imaging, published electrophysiological experiments suggest P30-P35 astrocytes have alpha-amino-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. For this study, we imaged astrocytes in P31-P38 hippocampal slices to determine if metabotropic and ionotropic glutamate receptor activation elevates intracellular calcium in mature astrocytes. Drugs were perfused while [Ca2+]i was monitored (confocal imaging) in cells loaded with Calcium Green 1-AM. Imaged cells were subsequently identified as astrocytes by GFAP/S-100 immunostaining. Astrocytic Ca2+ increased after glutamate application in the presence of a glutamate uptake inhibitor. An agonist at group I/II metabotropic glutamate receptors, (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (t-ACPD), elicited Ca2+ increases as did group I agonist 3,5-dihydroxyphenylglycine (DHPG), suggesting that mature astrocytes respond to glutamate via metabotropic glutamate receptors. AMPA also elicited Ca2+ elevations that were inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and occurred after treatment with omega-conotoxin MVIIC to block neurotransmitter release. These results demonstrate that astrocytes in mature hippocampus have functional ionotropic and metabotropic glutamate receptors that regulate astrocytic calcium levels. Glutamatergic regulation of astrocytic [Ca2+]i may be involved in synapse modeling, long-term potentiation, excitotoxicity and other events dependent on glutamatergic transmission in adult hippocampus.[Abstract] [Full Text] [Related] [New Search]