These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct inhibitory effect of nicardipine on basolateral K+ channels in human colonic crypts.
    Author: Sandle GI, Butterfield I, Higgs NB, Warhurst G.
    Journal: Pflugers Arch; 1999 Mar; 437(4):596-602. PubMed ID: 10089573.
    Abstract:
    The most abundant basolateral K+ channels in human colonic crypt cells have a low conductance (23 pS), respond to increases in intracellular Ca2+ and cAMP, and have been implicated in intestinal electrogenic Cl- secretion. The effect of nicardipine on the activity of these K+ channels was examined by patch-clamp recording in the cell-attached and excised inside-out configurations from the basolateral membrane of single crypts isolated from biopsied samples of human distal colon. During cell-attached recordings, addition of 2 micromol/l nicardipine to crypts pretreated with 200 micromol/l dibutyryl cAMP decreased single-channel open probability by 87%, but in parallel studies nicardipine had no effect on the intracellular Ca2+ concentration. Using inside-out patches from crypts pretreated with dibutyryl cAMP (bathed in 1.2 mmol/l Ca2+), the addition of increasing concentrations of nicardipine (200 nmol/l, 2 micromol/l and 20 micromol/l) decreased single-channel open probability in a concentration-dependent manner (IC50 0.47 micromol/l). In additional experiments using stripped rat distal colonic mucosa mounted in conventional Ussing chambers, serosal addition of nicardipine at increasing concentrations (ranging from 200 nmol/l to 20 micromol/l) produced a concentration-dependent inhibition of dibutyryl-cAMP-stimulated electrogenic Cl- secretion (IC50 2 micromol/l). Taken together, these results indicate that nicardipine has a direct inhibitory action on 23-pS basolateral K+ channels in human intestinal crypt cells, which is likely to decrease cAMP-stimulated electrogenic Cl- secretion. These basolateral K+ channels may provide a focal point for the development of new strategies in the treatment of secretory diarrhoeal diseases.
    [Abstract] [Full Text] [Related] [New Search]