These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Schizosaccharomyces pombe Aps1, a diadenosine 5',5' "-P1, P6-hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme.
    Author: Ingram SW, Stratemann SA, Barnes LD.
    Journal: Biochemistry; 1999 Mar 23; 38(12):3649-55. PubMed ID: 10090752.
    Abstract:
    The fission yeast Schizosaccharomyces pombe contains a gene on chromosome I that encodes a hypothetical nudix hydrolase, YA9E. The gene, designated aps1, has been cloned and the protein has been purified from Escherichia coli with a yield of 10 mg of Aps1/L of culture. Aps1, composed of 210 amino acids with a calculated molecular mass of 23 724 Da, behaves as a monomer with a sedimentation coefficient of 1.92 S as determined by analytical ultracentrifugation. The effective hydrodynamic radius is about 29 A as determined by both analytical ultracentrifugation and gel-filtration chromatography. Aps1, whose expression was detected in S. pombe by Western blotting, is an enzyme that catalyzes the hydrolysis of dinucleoside oligophosphates, with Ap6A and Ap5A being the preferred substrates. The major reaction products are ADP and p4A from Ap6A and ADP and ATP from Ap5A. Values of Km for Ap6A and Ap5A are 19 microM and 22 microM, respectively, and the corresponding values of kcat are 2.0 s-1 and 1.7 s-1, respectively. The enzyme has limited activity on Ap4A and negligible activity on Ap3A, ADP-ribose, and NADH. Aps1 catalyzes the hydrolysis of mononucleotides with decreasing activity in order from p5A to AMP. Optimal activity with Ap6A as substrate is observed at pH 7.6 and in the presence of 0.1-1 mM MnCl2. Aps1 is the first nudix hydrolase isolated from S. pombe, and it is the first enzyme identified with this specific substrate specificity and reaction products.
    [Abstract] [Full Text] [Related] [New Search]