These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Discovery of a novel class of selective non-peptide antagonists for the human neurokinin-3 receptor. 2. Identification of (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (SB 223412).
    Author: Giardina GA, Raveglia LF, Grugni M, Sarau HM, Farina C, Medhurst AD, Graziani D, Schmidt DB, Rigolio R, Luttmann M, Cavagnera S, Foley JJ, Vecchietti V, Hay DW.
    Journal: J Med Chem; 1999 Mar 25; 42(6):1053-65. PubMed ID: 10090788.
    Abstract:
    Optimization of the previously reported 2-phenyl-4-quinolinecarboxamide NK-3 receptor antagonist 14, with regard to potential metabolic instability of the ester moiety and affinity and selectivity for the human neurokinin-3 (hNK-3) receptor, is described. The ester functionality could be successfully replaced by the ketone (31) or by lower alkyl groups (Et, 21, or n-Pr, 24). Investigation of the substitution pattern of the quinoline ring resulted in the identification of position 3 as a key position to enhance hNK-3 binding affinity and selectivity for the hNK-3 versus the hNK-2 receptor. All of the chemical groups introduced at this position, with the exception of halogens, increased the hNK-3 binding affinity, and compounds 53 (3-OH, SB 223412, hNK-3-CHO binding Ki = 1.4 nM) and 55 (3-NH2, hNK-3-CHO binding Ki = 1.2 nM) were the most potent compounds of this series. Selectivity studies versus the other neurokinin receptors (hNK-2-CHO and hNK-1-CHO) revealed that 53 is about 100-fold selective for the hNK-3 versus hNK-2 receptor, with no affinity for the hNK-1 at concentrations up to 100 microM. In vitro studies demonstrated that 53 is a potent functional antagonist of the hNK-3 receptor (reversal of senktide-induced contractions in rabbit isolated iris sphincter muscles and reversal of NKB-induced Ca2+ mobilization in CHO cells stably expressing the hNK-3 receptor), while in vivo this compound showed oral and intravenous activity in NK-3 receptor-driven models (senktide-induced behavioral responses in mice and senktide-induced miosis in rabbits). Overall, the biological data indicate that (S)-N-(1-phenylpropyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (53, SB 223412) may serve as a pharmacological tool in animal models of disease to assess the functional and pathophysiological role of the NK-3 receptor and to establish therapeutic indications for non-peptide NK-3 receptor antagonists.
    [Abstract] [Full Text] [Related] [New Search]