These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry.
    Author: Venter H, Osthoff G, Litthauer D.
    Journal: Protein Expr Purif; 1999 Apr; 15(3):282-95. PubMed ID: 10092488.
    Abstract:
    The heat-stable protease from Chryseobacterium indologenes Ix9a was purified to homogeneity using immobilized metal affinity chromatography. The enzyme was characterized as a metalloprotease with an approximate relative molecular mass of 24,000, a pH optimum of 6.5, and a high temperature optimum (50 degrees C). The metal chelator EDTA and the Zn2+-specific chelator 1,10-phenanthroline were identified as inhibitors and atomic absorption analysis showed that the enzyme contained Ca2+ and Zn2+. The activity of the apoenzyme could be restored with Ca2+, Zn2+, Mg2+, and Co2+. Phosphoramidon and Gly-d-Phe did not inhibit Chryseobacterium indologenes Ix9a protease. Heat inactivation did not follow first order kinetics, but showed biphasic inactivation curves. The protease has a Km of 0.813 microg. ml-1 for casein as substrate. Amino acid analysis showed that the protease contains a high amount of small amino acids like glycine, alanine, and serine, but a low concentration of methionine and no cysteine at all. Electrospray mass spectrometry of proteolysis fragments formed when insulin B chain was hydrolyzed showed cleavage at the amino terminal of leucine, tyrosine, and phenylalanine. A hydrophobic amino acid at the carboxyl donating side seems to increase the rate of reaction.
    [Abstract] [Full Text] [Related] [New Search]