These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic ethanol consumption disrupts complexation between EGF receptor and phospholipase C-gamma1: relevance to impaired hepatocyte proliferation.
    Author: Zhang BH, Farrell GC.
    Journal: Biochem Biophys Res Commun; 1999 Apr 02; 257(1):89-94. PubMed ID: 10092515.
    Abstract:
    We have previously shown that chronic ethanol consumption inhibits liver regeneration by impairing EGF receptor (EGFR)-operated phospholipase C-gamma1 (PLC-gamma1) activation and resultant intracellular Ca2+ signalling. Activation of PLC-gamma1 by EGFR requires the EGFR to bind to PLC-gamma1 after its translocation from cytosol to cytoskeleton. In order to understand the mechanism by which ethanol impairs PLC-gamma1 activation, we examined the effect of alcohol on interactions between EGFR and PLC-gamma1. In cultured hepatocytes from control rats, EGF rapidly induced tyrosine phosphorylation of both the EGFR and of PLC-gamma1. EGF also stimulated PLC-gamma1 translocation from cytosol to a cytoskeletal compartment where PLC-gamma1 interacted with EGFR. In hepatocytes from rats fed ethanol for 16 weeks, the above reactions were substantially inhibited. Tyrphostin AG1478, an EGFR-specific tyrosine kinase inhibitor, mimicked the effects of chronic ethanol on EGFR phosphorylation, PLC-gamma1 translocation and interactions between EGFR and PLC-gamma1 in the cytoskeleton. Further, tyrphostin AG1478 also inhibited EGF-induced DNA synthesis. These results indicate that ethanol impairs EGFR-operated [Ca2+]i signaling by disrupting the interactions between EGFR and PLC-gamma1.
    [Abstract] [Full Text] [Related] [New Search]