These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of formyl peptide receptor expression by IL-10 in human monocytes and neutrophils.
    Author: Thivierge M, Parent JL, Stankova J, Rola-Pleszczynski M.
    Journal: J Immunol; 1999 Mar 15; 162(6):3590-5. PubMed ID: 10092818.
    Abstract:
    IL-10, originally described as a cytokine synthesis inhibitory factor, is secreted by a number of cells of the immune system, including monocytes and T cells. Although IL-10 is being assigned as an immunosuppressive cytokine, our study showed that FMLP-R mRNA was rapidly up-regulated by exposure of monocytes to graded concentrations of this cytokine, with maximal (three- to fourfold) stimulation with 10 ng/ml. The effect was rapid, being observable as early as 1 h of treatment with IL-10, maximal between 2 and 4 h, and still evident after 24 h and was associated with an increase of receptor expression on the cell surface as assessed by flow cytometry analysis. Pretreatment of monocytes with actinomycin D completely abrogated the effect of IL-10, suggesting a transcriptional regulation. Moreover, IL-10-treated monocytes showed a significantly enhanced functional responsiveness to FMLP with enhanced (three- to fourfold) chemotaxis and augmented (twofold) intracellular calcium mobilization. In polymorphonuclear neutrophils (PMN), IL-10 also mediated a twofold augmentation of FMLP-R expression. In parallel experiments, we observed that IL-10 could differentially modulate other chemotactic receptors. Hence, we observed that IL-10 augmented two-to threefold platelet-activating factor receptor (PAF-R) expression, whereas it had no significant effect on the fifth component of complement (C5a) receptor (C5a-R) expression. Collectively, our results demonstrate that IL-10 may play an important role in inflammatory process through modulation of chemotactic receptor expression.
    [Abstract] [Full Text] [Related] [New Search]