These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Filter ventilation and nicotine content of tobacco in cigarettes from Canada, the United Kingdom, and the United States. Author: Kozlowski LT, Mehta NY, Sweeney CT, Schwartz SS, Vogler GP, Jarvis MJ, West RJ. Journal: Tob Control; 1998; 7(4):369-75. PubMed ID: 10093170. Abstract: OBJECTIVES: The purpose was to determine filter ventilation and the nicotine content of tobacco and their contribution to machine-smoked yields of cigarettes from the United States, Canada, and the United Kingdom. METHODS: Ninety-two brands of cigarettes (32 American, 23 Canadian, and 37 British brands) were purchased at retail outlets in State College, Pennsylvania, United States, Toronto, Canada, and London, United Kingdom. A FIDUS FDT filter ventilation tester measured the percentage air-dilution from filter vents. High-pressure, liquid chromatography was used to measure the nicotine content of tobacco. Regression techniques were used to examine the contributions of tobacco nicotine content and filter ventilation to machine-smoked yields of tar, nicotine, and carbon monoxide (CO). RESULTS: Ninety-four per cent of the American brands, 91% of the Canadian brands, and 79% of British brands were ventilated. The total nicotine content of tobacco and percent nicotine (by weight of tobacco) averaged 10.2 mg (standard error of the mean (SEM) 0.25, range: 7.2 to 13.4) and 1.5% (SEM 0.03, range 1.2 to 2) in the United States, 13.5 mg (SEM 0.49, range: 8.0 to 18.3) and 1.8% (SEM 0.06, range: 1.0 to 2.4) in Canada, 12.5 mg (SEM 0.33, range: 9 to 17.5) and 1.7% (SEM 0.04, range: 1.3 to 2.4) in the United Kingdom. Multiple regression analyses showed that ventilation was by far the largest factor influencing machine-smoked yields of tar, nicotine, and CO. CONCLUSION: Filter ventilation appears to be the predominant method for reducing machine-smoked yields of tar, nicotine, and CO in three countries. However, some brands contain about twice as much nicotine (total content or percent nicotine) as do others, indicating that tobacco types or blends and tobacco castings can be used to manipulate nicotine content and nicotine delivery of cigarettes.[Abstract] [Full Text] [Related] [New Search]