These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Angiotensin II receptors-antagonists, molecular biology, and signal transduction. Author: Jagadeesh G. Journal: Indian J Exp Biol; 1998 Dec; 36(12):1171-94. PubMed ID: 10093499. Abstract: The renin-angiotensin-aldosterone system (RAAS) plays an important role in both the short-term and long-term regulation of arterial blood pressure, and fluid and electrolyte balance. The RAAS is a dual hormone system, serving as both a circulating and a local tissue hormone system (i.e., local mediator) as well as neurotransmitter or neuromediator functions in CNS. Control of blood pressure by the RAAS is exerted through multiple actions of angiotensin II, a small peptide which is a potent vasoconstrictor hormone implicated in the genesis and maintenance of hypertension. Hypertension is a primary risk factor associated with cardiovascular, cerebral and renal vascular disease. One of the approaches to the treatment of hypertension, which may be considered as a major scientific advancement, involves the use of drugs affecting the RAAS. Pharmacological interruption of the RAAS was initially employed in the late 1970s with the advent of the angiotensin converting enzyme (ACE) inhibitor, captopril. ACE inhibitors have since gained widespread use in the treatment of mild to moderate hypertension, congestive heart failure, myocardial infarction, and diabetic nephropathy. As the roles of the RAAS in the pathophysiology of several diseases was explored, so did the realization of the importance of inhibiting the actions of angiotensin II. Although ACE inhibitors are well tolerated, they are also involved in the activation of bradykinin, enkephalins, and other biologically active peptides. These actions result in adverse effects such as cough, increased bronchial reactivity, and angioedema. Thus, the goal of achieving a more specific blockade of the effects of angiotensin II than is possible with ACE inhibition. The introduction of the nonpeptide angiotensin II receptor antagonist losartan in 1995 marked the achievement of this objective and has opened new vistas in understanding and controlling the additional biological effects of angiotensin II. Complementary investigations into the cloning and sequencing of angiotensin II receptors have demonstrated the existence of a family of angiotensin II receptor subtypes. Two major types of angiotensin II receptors have been identified in humans. The type 1 receptor (AT1) mediates most known effects of angiotensin II. The type 2 receptor (AT2), for which no precise function was known in the past, has gained importance recently and new mechanisms of intracellular signalling have been proposed. This review presents recent advances in angiotensin II receptor pharmacology, molecular biology, and signal transduction, with particular reference to the AT1 receptor. Excellent reviews have appeared recently on this subject.[Abstract] [Full Text] [Related] [New Search]