These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fos expression in the cat brainstem after unilateral vestibular neurectomy.
    Author: Gustave Dit Duflo S, Gestreau C, Tighilet B, Lacour M.
    Journal: Brain Res; 1999 Apr 03; 824(1):1-17. PubMed ID: 10095037.
    Abstract:
    Immediate early genes are generally expressed in response to sensory stimulation or deprivation and can be used for mapping brain functional activity and studying the molecular events underlying CNS plasticity. We immunohistochemically investigated Fos protein induction in the cat brainstem after unilateral vestibular neurectomy (UVN), with special reference to the vestibular nuclei (VN) and related structures. Fos-like immunoreactivity was analyzed at 2, 8, and 24 h, and 1 and 3 weeks after UVN. Data from these subgroups of cats were quantified in light microscopy and compared to those recorded in control and sham-operated animals submitted to anesthesia and anesthesia plus surgery, respectively. Results showed a very low level of Fos expression in the control and sham conditions. By contrast, Fos was consistently induced in the UVN cats. Asymmetrical labeling was found in the medial, inferior, and superior VN (ipsilateral predominance) and in the prepositus hypoglossi (PH) nuclei and the beta subnuclei of the inferior olive (betaIO) (contralateral predominance). Symmetrical staining was observed in the autonomic, tegmentum pontine, pontine gray, locus coeruleus and other reticular-related nuclei. As a rule, Fos expression peaked early (2 h) and declined progressively. However, some brainstem structures including the ipsilateral inferior VN and the bilateral pontine gray nuclei displayed a second peak of Fos expression (24 h-1 week). By comparing these data to the behavioral recovery process, we conclude that the early Fos expression likely reflects the activation of neural pathways in response to UVN whereas the delayed Fos expression might underlie long-term plastic changes involved in the recovery process.
    [Abstract] [Full Text] [Related] [New Search]