These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Connective tissue growth factor (IGFBP-rP2) expression and regulation in cultured bovine endothelial cells. Author: Boes M, Dake BL, Booth BA, Erondu NE, Oh Y, Hwa V, Rosenfeld R, Bar RS. Journal: Endocrinology; 1999 Apr; 140(4):1575-80. PubMed ID: 10098490. Abstract: Media from large vessel endothelial cells (pulmonary artery, aorta) contained intact connective tissue growth factor (CTGF) and a dominant 19-kDa band. N-terminal analysis of the 19-kDa band showed sequence corresponding to CTGF amino acid 181-190, suggesting that the 19-kDa band represented a proteolytic fragment of CTGF. Intact CTGF was increased by cAMP but not by transforming growth factor-beta (TGFbeta). CTGF messenger RNA (mRNA) was not changed by cAMP nor TGFbeta. In two microvessel endothelial cells, mRNA was found at low levels by PCR and Northern analysis, but no CTGF protein was seen on Western analysis. In the microvessel cells, TGFbeta increased and cAMP did not change CTGF mRNA levels, with neither TGFbeta nor cAMP increasing CTGF protein. The discordance between protein and mRNA levels in large vessel and microvessel endothelial cells was mostly explained by the effects of cAMP and TGFbeta on media proteolytic activity; in large vessel cells, cAMP inhibited degradation of CTGF, whereas in microvessel cells, TGFbeta and cAMP stimulated proteolytic activity against CTGF. We conclude that in large vessel endothelial cells, cAMP increased intact CTGF protein by inhibiting degradation of CTGF, whereas TGFbeta stimulated neither CTGF mRNA nor protein; in microvessel cells, TGFbeta increased CTGF mRNA, while both TGFbeta and cAMP stimulated CTGF degradation.[Abstract] [Full Text] [Related] [New Search]