These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phoneutria nigriventer toxin Tx3-1 blocks A-type K+ currents controlling Ca2+ oscillation frequency in GH3 cells. Author: Kushmerick C, Kalapothakis E, Beirão PS, Penaforte CL, Prado VF, Cruz JS, Diniz CR, Cordeiro MN, Gomez MV, Romano-Silva MA, Prado MA. Journal: J Neurochem; 1999 Apr; 72(4):1472-81. PubMed ID: 10098851. Abstract: GH3 cells present spontaneous Ca2+ action potentials and oscillations of intracellular Ca2+, which can be modified by altering the activity of K+ or Ca2+ channels. We took advantage of this spontaneous activity to screen for effects of a purified toxin (Tx3-1) from the venom of Phoneutria nigriventer on ion channels. We report that Tx3-1 increases the frequency of Ca2+ oscillations, as do two blockers of potassium channels, 4-aminopyridine and charybdotoxin. Whole-cell patch clamp experiments show that Tx3-1 reversibly inhibits the A-type K+ current (I(A)) but does not block other K+ currents (delayed-rectifying, inward-rectifying, and large-conductance Ca2+-sensitive) or Ca2+ channels (T and L type) in these cells. In addition, we describe the sequence of a full cDNA clone of Tx3-1, which shows that Tx3-1 has no homology to other known blockers of K+ channels and gives insights into the processing of this neurotoxin. We conclude that Tx3-1 is a selective inhibitor of I(A), which can be used to probe the role of this channel in the control of cellular function. Based on the effect of Tx3-1, we suggest that I(A) is an important determinant of the frequency of Ca2+ oscillations in unstimulated GH3 cells.[Abstract] [Full Text] [Related] [New Search]