These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Perturbation of the actin cytoskeleton induces PAI-1 gene expression in cultured epithelial cells independent of substrate anchorage. Author: Providence KM, Kutz SM, Higgins PJ. Journal: Cell Motil Cytoskeleton; 1999; 42(3):218-29. PubMed ID: 10098935. Abstract: Perturbation of cellular architecture with agents that alter cytoskeletal organization provides a means to assess the relationship between cell shape and gene expression. Induced transcription of the plasminogen activator inhibitor type-1 (PAI-1) gene in serum-free cultures of normal rat kidney (NRK-52E) cells following disruption of actin microfilament structures with cytochalasin D (CD) provides a simple model to probe mechanisms underlying shape-related expression control. Transition from the typical flat epithelial cell shape to an "arborized" phenotype was a concomitant of the PAI-1 inductive response. Stimulated expression occurred rapidly (i.e., within 2 h of CD addition), involved increases in both PAI-1 mRNA abundance and de novo protein synthesis, and was dependent upon the concentration of CD used. A series of culture conditions were designed (e.g., use of bacteriological surfaces, poly-HEMA coated surfaces, maintenance in suspension on agarose) to discriminate cell shape from adhesive influences on CD-stimulated PAI-1 expression. Cytoskeletal disruption, and not simply changes in cell shape, was a critical aspect of CD-mediated PAI-1 expression in NRK cells cultured under serum-free conditions; induced expression was independent of substrate anchorage. Low concentrations of CD (1-2 microM) failed to cause cell arborization or increase either relative PAI-1 mRNA/protein abundance levels suggesting, however, that cell rounding may be a necessary but not sufficient aspect in CD-mediated PAI-1 induction. Transfection of PAI-1 promoter-CAT reporter constructs into NRK cells followed by stimulation with CD or serum additionally indicated that CD-induced PAI-1 expression did not utilize the same functional complement of serum-responsive promoter sequences, thus, further defining differences in the growth factor- and cytoskeletal-mediated pathways of PAI-1 gene regulation.[Abstract] [Full Text] [Related] [New Search]