These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses.
    Author: Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ.
    Journal: Brain Res Mol Brain Res; 1999 Apr 06; 67(1):107-23. PubMed ID: 10101238.
    Abstract:
    The present study reports on G-protein activation by recombinant 5-HT receptors and by native 5-HT1A and 5-HT1B receptors in guinea-pig and rat brain using agonist-stimulated [35S]GTPgammaS binding responses mediated by a new 5-HT ligand, a dimer of sumatriptan. Dimerization of sumatriptan increased the binding affinity for h 5-HT1B (pKi: 9.22 vs. 7.79 for sumatriptan), h 5-HT1D (9.07 vs. 8.08) and also h 5-HT1A receptors (7.80 vs. 6.40), while the binding affinity for h 5-ht1E (6.67 vs. 6.19) and h 5-ht1F (7.37 vs. 7.78) receptors was not affected. Sumatriptan dimer (10 microM) stimulated [35S]GTPgammaS binding mainly in the superficial gray layer of the superior colliculi, hippocampus and substantia nigra of guinea-pig and rat coronal brain sections. This fits with the labelling by the 5-HT1B/1D receptor antagonist [3H] GR 125743. The observed [35S]GTPgammaS binding responses in the substantia nigra are likely to be mediated by stimulation of the 5-HT1B receptor subtype, since they were antagonized by the 5-HT1B inverse agonist SB 224289 (10 microM), and not by the 5-HT2A/1D antagonist ketanserin (10 microM). Quantitative assessment of the [35S]GTPgammaS binding responses in the substantia nigra of rat showed highly efficacious responses for both sumatriptan dimer and its monomer. In contrast, less efficacious agonist responses (51+/-10% and 35+/-13%, respectively) were measured in the guinea-pig substantia nigra. This may suggest that the G-protein coupling efficacy of 5-HT1B receptors is different between the substantia nigra of both species. In addition, the sumatriptan dimer also activated guinea-pig and rat hippocampal 5-HT1A receptors with high efficacy in contrast to sumatriptan. Therefore, dimerization of sumatriptan can be considered as a new approach to transform a partial 5-HT1A agonist into a more efficacious agonist. In conclusion, the sumatriptan dimer stimulates G-protein activation via 5-HT1B receptors besides 5-HT1A receptors in guinea-pig and rat brain. The magnitude of the 5-HT1B receptor responses is superior for sumatriptan and its dimer in rat compared to guinea-pig substantia nigra.
    [Abstract] [Full Text] [Related] [New Search]