These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Assessment of risk reduction strategies for the management of agricultural nonpoint source pesticide runoff in estuarine ecosystems.
    Author: Scott GI, Fulton MH, Moore DW, Wirth EF, Chandler GT, Key PB, Daugomah JW, Strozier ED, Devane J, Clark JR, Lewis MA, Finley DB, Ellenberg W, Karnaky KJ.
    Journal: Toxicol Ind Health; 1999; 15(1-2):200-13. PubMed ID: 10188203.
    Abstract:
    Agricultural nonpoint source (NPS) runoff may result in significant discharges of pesticides, suspended sediments, and fertilizers into estuarine habitats adjacent to agricultural areas or downstream from agricultural watersheds. Exposure of estuarine fin fish and shellfish to toxic levels of pesticides may occur, resulting in significant declines in field populations. Integrated pest management (IPM), best management practices (BMP), and retention ponds (RP) are risk management tools that have been proposed to reduce the contaminant risk from agricultural NPS runoff into estuarine ecosystems. Field studies were conducted at three sites within coastal estuarine ecosystems of South Carolina (SC) from 1985 to 1990 that varied in terms of the amount and degree of risk reduction strategies employed. An intensively managed (IPM, BMP, and RP) agricultural treatment site (TRT) was studied for pesticide runoff impacts. From 1985 to 1987, there were minimal (some IPM and BMP) management activities at TRT, but from 1988 to 1990, TRT was managed using an intensive risk reduction strategy. A second unmanaged agricultural growing area, Kiawah (KWA), was also studied and compared with TRT in terms of pesticide runoff and the resulting impacts on grass shrimp (Palaemonetes pugio) and mummichogs (Fundulus heteroclitus). A third, non-agricultural, reference site (CTL) was used for comparing results from the managed and unmanaged agricultural sites. In situ toxicity tests and field samples of the grass shrimp populations were conducted at each site and compared in terms of survival and the effectiveness of current risk reduction strategies. Significant runoff of insecticides (azinphosmethyl, endosulfan, and fenvalerate) along with several fish kills were observed at TRT prior to the implementation of rigorous risk reduction methods. A significant reduction of in stream pesticide concentrations (up to 90%) was observed at TRT following the implementation of strict NPS runoff controls, which greatly reduced impacts on estuarine fish and shellfish. At the unmanaged KWA, continued impacts due to the runoff of these insecticides were observed, along with several fish kills. Additional monitoring indicated that gravid female grass shrimp populations from KWA had elevated levels of P-glycoprotein (P-gp), a multidrug resistance protein, which may transport various pesticides across cellular membranes. Comparison of field results with laboratory toxicity tests established that pesticide exposure was the primary cause of observed field impacts at each site. These findings clearly indicate the value of an integrated risk reduction strategy (BMP, IPM, and RP) for minimizing impacts from NPS agricultural pesticide runoff.
    [Abstract] [Full Text] [Related] [New Search]