These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of the 37 kDa laminin receptor precursor in the life cycle of prions.
    Author: Rieger R, Lasmézas CI, Weiss S.
    Journal: Transfus Clin Biol; 1999 Feb; 6(1):7-16. PubMed ID: 10188208.
    Abstract:
    Prions are thought to consist of infectious proteins that cause, in the absence of detectable nucleic acid, a group of fatal neurodegenerative diseases, called transmissible spongiform encephalopathies (TSE). Among these diseases are bovine spongiform encephalopathy (BSE), scrapie of sheep and Creutzfeldt-Jakob disease (CJD) in humans. They occur as sporadic, infectious or genetic disorders and have in common the accumulation of an abnormal, pathogenic isoform of the cellular prion protein PrPc which is converted in a post-translational process into PrPSc concomitant with conformational changes of the protein. During this process PrPc acquires a high beta-sheet content and becomes partially resistant to proteases. The mechanism of this conversion as well as the physiological function of the cellular prion protein PrPc are poorly understood, but studies employing PrP knock-out mice demonstrated that PrPc is required for the development of prion diseases. The involvement of co-factors such as chaperones, receptors or an unknown protein, designated "protein X" in the conversion process are discussed. In a yeast two-hybrid screen we have identified the 37 kDa laminin receptor precursor (LRP) as an interactor of the cellular prion protein and this interaction could be confirmed by co-infection and co-transfection studies in mammalian and insect cells. LRP evolved from the ribosomal protein p40 essential for protein synthesis lacking any laminin binding activity to a cell surface receptor binding laminin, elastin and carbohydrates. The gene encoding 37 kDa LRP/p40 has been identified in a variety of species including the sea urchin Urechis caupo, Chlorohydra viridissima, the archaebacterium Haloarcula marismortui, the yeast Saccharomyces cerevisiae as well as in mammals where it is highly conserved. LRP works as a receptor for alphaviruses and is associated with the metastatic potential of solid tumors where it was first identified. The 37 kDa LRP forms its mature 67 kDa isoform with high laminin binding capacity by an unknown mechanism involving acylation. The multifunctionality of LRP as a ribosomal protein and a cell surface receptor for infectious agents such as viruses and prions might be extended by additional properties.
    [Abstract] [Full Text] [Related] [New Search]