These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Current pharmacological approaches to the therapy of varicella zoster virus infections: a guide to treatment. Author: Snoeck R, Andrei G, De Clercq E. Journal: Drugs; 1999 Feb; 57(2):187-206. PubMed ID: 10188760. Abstract: Varicella zoster virus (VZV), a member of the herpesvirus family, is responsible for both primary (varicella, chickenpox) as well as reactivation (zoster, shingles) infections. In immunocompetent patients, the course of varicella is generally benign. For varicella zoster, post-herpetic neuralgia is the most common complication. In immunocompromised patients (particularly those with AIDS), transplant recipients and cancer patients, VZV infections can be life-threatening. For these patients and also for immunocompetent patients at risk such as pregnant women or premature infants, the current treatment of choice is based on either intravenous or oral aciclovir (acyclovir). The low oral bioavailability of aciclovir, as well as the emergence of drug-resistant virus strains, have stimulated efforts towards the development of new compounds for the treatment of individuals with VZV infections. Among these new compounds, penciclovir, its oral prodrug form famciclovir and the oral pro-drug form of aciclovir (valaciclovir), rank among the most promising. As with aciclovir itself, all of these drugs are dependent on the virus-encoded thymidine kinase (TK) for their intracellular activation (phosphorylation), and, upon conversion to their triphosphate form, they act as inhibitors/alternative substrate of the viral DNA polymerase. Therefore, cross-resistance to these drugs may be expected for those virus mutants that are TK-deficient and thus resistant to aciclovir. Other classes of nucleoside analogues dependent for their phosphorylation on the viral TK that have been pursued for the treatment of VZV infections include sorivudine, brivudine, fialuridine, fiacitabine and netivudine. Among oxetanocins, which are partially dependent on viral TK, lobucavir is now under clinical evaluation. Foscarnet, which does not require any previous metabolism to interact with the viral DNA polymerase, is used in the clinic when TK-deficient VZV mutants emerge during aciclovir treatment. TK-deficient mutants are also sensitive to the acyclic nucleoside phosphonates (i.e. [s]-1-[3-hydroxy-2-phosphonylmethoxypropyl]cytosine; HPMPC); these agents do not depend on the virus-encoded TK for their phosphorylation but depend on cellular enzymes for conversion to their diphosphoryl derivatives which then inhibit viral DNA synthesis. Vaccination for VZV has now come of age. It is recommended for healthy children, patients with leukaemia, and patients receiving immunosuppressive therapy or those with chronic diseases. The protection induced by the vaccine seems, to some extent, to include zoster and associated neuralgia. Passive immuniatin based on specific immunoglobulins does not effectively prevent VZV infection and is therefore restricted to high risk individuals (i.e. immunocompromised children and pregnant women).[Abstract] [Full Text] [Related] [New Search]