These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evolutionary conservation of MyoD function and differential utilization of E proteins.
    Author: Zhang JM, Chen L, Krause M, Fire A, Paterson BM.
    Journal: Dev Biol; 1999 Apr 15; 208(2):465-72. PubMed ID: 10191059.
    Abstract:
    The formation of striated muscle in both vertebrates and invertebrates involves the activity of the MyoD family of basic-helix-loop-helix (bHLH) transcription factors. The high degree of evolutionary conservation of MyoD-related proteins, both in the sequence of their bHLH domains and in their general developmental expression patterns, suggests that these factors are also conserved at the level of function. We have addressed this directly using MyoD and E protein factors from vertebrates, Drosophila, and Caenorhabditis elegans. Various MyoD and E factor combinations were tested for their ability to interact in vitro and to function in vivo in the myogenic conversion of 10T12 mouse fibroblasts. We found that the ability of different homo- and heterodimers to bind DNA in vitro was an accurate measure of biological activity in vivo. A second assessment of conserved function comes from the ability of these factors to rescue a C. elegans hlh-1 (CeMyoD) null mutation. We found that both Drosophila and chicken MyoD-related factors were able to rescue a C. elegans CeMyoD loss-of-function mutation. These results demonstrate a remarkable degree of functional conservation of these myogenic factors despite differences in E-protein interactions.
    [Abstract] [Full Text] [Related] [New Search]