These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biological actions of the epidermal growth factors-like domain peptides of mouse schwannoma-derived growth factor and human amphiregulin. Author: Takenouchi T, Kadosaka M, Shin SY, Munekata E. Journal: J Pept Res; 1999 Feb; 53(2):120-5. PubMed ID: 10195449. Abstract: Several members of the epidermal growth factor (EGF) family of growth factors that contain EGF-like units at their carboxy portion have been isolated and characterized. Schwannoma-derived growth factor (SDGF) and amphiregulin (AR) are members of this family. SDGF has high sequence homology to AR, and is known to be not only a potent mitogen for astrocytes and fibroblasts but also a neurotrophic factor. We previously confirmed that the synthetic EGF-like peptides SDGF(38-80) and AR(44-84), corresponding to the EGF-like domain of mouse SDGF and human AR, respectively, formed similar disulfide bond patterns to that of EGF. In the present study, we further investigated the biological actions of these two EGF-like peptides on several cultured cell lines. We found that SDGF(38-80) and AR(44-84) have weak mitogenic activity in NIH/3T3 cells and weak binding affinity to the EGF receptor on the surface of A431 cells compared with EGF. However, SDGF(38-80) and EGF induced short neurite outgrowth in PC12 h cells, a subclone of PC12 cells, at 100 nM. In addition, a significant increase in acetylcholinesterase (AChE) activity induced by SDGF(38-80) was observed at a concentration similar range to that of EGF, which is known as a differentiation marker of these cells. The effect of AR(44-84) in PC12 h cells was weaker than those of SDGF(38-80) and EGF, but the AChE activity was significantly increased by the addition of 100 nM AR(44-84), which did not stimulate NIH/3T3 cell growth. These results also suggest that SDGF(38-80) and AR(44-84) may be effective for neuronal differentiation rather than proliferation.[Abstract] [Full Text] [Related] [New Search]