These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Propionic acid stimulates superoxide generation in human neutrophils.
    Author: Nakao S, Moriya Y, Furuyama S, Niederman R, Sugiya H.
    Journal: Cell Biol Int; 1998; 22(5):331-7. PubMed ID: 10198152.
    Abstract:
    Short-chain carboxylic acids are the metabolic by-products of pathogenic anaerobic bacteria and are found at sites of infection in millimolar quantities. We previously reported that propionic acid, one of the short-chain carboxylic acids, induces an increase in intracellular Ca2+ ([Ca2+]i) in human neutrophils. Here we investigate the effect of propionic acid on superoxide generation in human neutrophils. Propionic acid (10 mm) induced inositol 1,4, 5-trisphosphate (IP3) formation and a rapidly transient increase in [Ca2+]i, but not superoxide generation, whereas 1 microm formylmethionyl-leucyl-phenylalanine (fMLP), a widely used neutrophil-stimulating bacterial peptide, stimulated not only IP3 formation and Ca2+ mobilization but also superoxide generation. The IP3 level induced by propionic acid was slightly lower than that induced by fMLP. The transient increase in [Ca2+]i induced by propionic acid immediately returned to the basal level, whereas a sustained increase in [Ca2+]i, which was higher than the basal level, following a transient increase in [Ca2+]i was induced by fMLP. The peak level induced by propionic acid was lower than that with fMLP. In the absence of extracellular Ca2+, thapsigargin, a potent inhibitor of endoplasmic reticulum Ca2+-ATPase, induced an increase in [Ca2+]i even after propionic acid stimulation, but not after fMLP. The Ca2+ ionophore A23187 and thapsigargin induced superoxide generation by themselves. Propionic acid enhanced the superoxide generating effect of A23187 and thapsigargin. These results suggest that Ca2+ mobilization induced by propionic acid is much weaker than that with fMLP, and propionic acid is able to generate superoxide in the presence of a Ca2+ ionophore and a Ca2+ influx activator.
    [Abstract] [Full Text] [Related] [New Search]