These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The role of the tumor suppressor p53 in spermatogenesis. Author: Beumer TL, Roepers-Gajadien HL, Gademan IS, van Buul PP, Gil-Gomez G, Rutgers DH, de Rooij DG. Journal: Cell Death Differ; 1998 Aug; 5(8):669-77. PubMed ID: 10200522. Abstract: The p53 protein appeared to be involved in both spermatogonial cell proliferation and radiation response. During normal spermatogenesis in the mouse, spermatogonia do not express p53, as analyzed by immunohistochemistry. However, after a dose of 4 Gy of X-rays, a distinct p53 staining was present in spermatogonia, suggesting that, in contrast to other reports, p53 does have a role in spermatogonia. To determine the possible role of p53 in spermatogonia, histological analysis was performed in testes of both p53 knock out C57BL/6 and FvB mice. The results indicate that p53 is an important factor in normal spermatogonial cell production as well as in the regulation of apoptosis after DNA damage. First, p53 knock out mouse testes contained about 50% higher numbers of A1 spermatogonia, indicating that the production of differentiating type spermatogonia by the undifferentiated spermatogonia is enhanced in these mice. Second, 10 days after a dose of 5 Gy of X-rays, in the p53 knock out testes, increased numbers of giant sized spermatogonial stem cells were found, indicating disturbance of the apoptotic process in these cells. Third, in the p53 knock out testis, the differentiating A2-B spermatogonia are more radioresistant compared to their wild-type controls, indicating that p53 is partly indispensable in the removal of lethally irradiated differentiating type spermatogonia. In accordance with our immunohistochemical data, Western analysis showed that levels of p53 are increased in total adult testis lysates after irradiation. These data show that p53 is important in the regulation of cell production during normal spermatogenesis either by regulation of cell proliferation or, more likely, by regulating the apoptotic process in spermatogonia. Furthermore, after irradiation, p53 is important in the removal of lethally damaged spermatogonia.[Abstract] [Full Text] [Related] [New Search]