These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acid-induced acid tolerance and acidogenicity of non-mutans streptococci.
    Author: Takahashi N, Yamada T.
    Journal: Oral Microbiol Immunol; 1999 Feb; 14(1):43-8. PubMed ID: 10204479.
    Abstract:
    Acid tolerance and acidogenicity of non-mutans streptococci and their capacity of acid adaptation were studied. The cells of non-mutans streptococci (Streptococcus sanguis [Streptococcus sanguinis], Streptococcus gordonii, Streptococcus oralis and Streptococcus mitis) grown at pH 7.0 showed 0.0088% to 71% viability after acidification at pH 4.0 for 60 min, whereas the cells of mutans streptococci (Streptococcus mutans) were not killed by the acidification. Washed cells of non-mutans streptococci lowered pH to 4.04-4.33 in the presence of glucose, while mutans streptococci cells lowered pH to 3.70. When the growth pH was shifted to 5.5 for 30-90 min, the viability of non-mutans streptococci after the acidification at pH 4.0 for 60 min increased (0.25% to 91%) and the minimum pH values of the cells in the presence of glucose decreased (3.90 4.19). Along with the increase in acid tolerance and acidogenicity, non-mutans streptococci increased activities of H(+)-ATPase and arginine deiminase and amounts of stress proteins cross-reacting with 60 kDa and 70 kDa heat shock proteins (Hsp60 and Hsp70). These results indicate that non-mutans streptococci were capable of increasing their acid tolerance and acidogenicity in response to environmental acidification. Furthermore, it is suggested that the acid adaptation observed in non-mutans streptococci cells could involve the induction of H(+)-ATPase, arginine deiminase and stress protein syntheses. The strains of non-mutans streptococci, which are pioneer bacteria for dental plaque formation and predominant in plaque microbial flora, may play a significant role in shifting the dental plaque environment toward acidic and consequently promoting the colonization of more acid-tolerant and acidogenic bacteria such as mutans streptococci and lactobacilli.
    [Abstract] [Full Text] [Related] [New Search]