These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Expression of plasminogen activator inhibitor-1 in human adipose tissue: a role for TNF-alpha? Author: Cigolini M, Tonoli M, Borgato L, Frigotto L, Manzato F, Zeminian S, Cardinale C, Camin M, Chiaramonte E, De Sandre G, Lunardi C. Journal: Atherosclerosis; 1999 Mar; 143(1):81-90. PubMed ID: 10208482. Abstract: Elevated plasminogen activator inhibitor-1 (PAI-1) plasma levels, responsible for reduced fibrinolysis, are associated with animal and human obesity and with increased cardiovascular disease. The expression of PAI-1 has been found recently in animal and human adipose tissue. Factors and mechanisms regulating such an expression remain to be elucidated. In omental and/or subcutaneous biopsies from obese non-diabetic patients, incubated in Medium 199, we have confirmed that human adipose tissue expresses PAI-1 protein and mRNA; furthermore we have demonstrated that such an expression is clearly evident also in collagenase isolated human adipocytes and that it is stimulated by incubation itself and enhanced by exogenous human tumor necrosis factor-alpha (h-TNF-alpha). Since human adipose tissue produces TNF-alpha, to further characterize the relationship of PAI-1 to TNF-alpha, human fat biopsies were also incubated with Pentoxifylline (PTX) or Genistein, both known to inhibit endogenous TNF-alpha through different mechanisms. PTX caused a dose-dependent decrease of basal PAI-1 protein release, reaching 80% maximal inhibitory effect at 10(-3)M, the same inhibitory effect caused by Genistein at 100 microg/ml. This was associated to a marked inhibition of PAI-1 mRNA and of endogenous TNF-alpha production. Furthermore, when human fat biopsies were incubated in the presence of polyclonal rabbit neutralizing anti-human TNF-alpha antibody (at a concentration able to inhibit 100 UI/ml human TNF-alpha activity), a modest but significant decrease of the incubation induced expression of PAI-1 mRNA was observed (19.8+/-19.0% decrease, P = 0.04, n = 7). In conclusion, the results of this study demonstrate that PAI-I expression is present in human isolated adipocytes and that it is enhanced in human adipose tissue in vitro by exogenous TNF-alpha. Furthermore our data support the possibility of a main role of endogenous TNF-alpha on human adipose tissue PAI-1 expression. This cytokine, produced by human adipose tissue and causing insulin resistance, may be a link in the clinical relationship between insulin-resistance syndrome and increased PAI-1 plasma levels.[Abstract] [Full Text] [Related] [New Search]