These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stem cell factor and interleukin-4 induce murine bone marrow cells to develop into mast cells with connective tissue type characteristics in vitro.
    Author: Karimi K, Redegeld FA, Heijdra B, Nijkamp FP.
    Journal: Exp Hematol; 1999 Apr; 27(4):654-62. PubMed ID: 10210323.
    Abstract:
    In this study, we have developed a method to obtain mast cells with connective tissue type mast cell (CTMC) characteristics directly from mouse bone marrow (BM) cells. BM cells were grown for 3 weeks in presence of interleukin-4 (IL-4) plus stem cell factor (SCF). SCF alone poorly supported growth and development of mast cells. IL-4 dose-dependently enhanced the expression of c-kit and high-affinity receptor for IgE (Fc(epsilon)RI) on the cell surface of SCF-cultured BM cells. Furthermore, cytoplasmic granulation and histamine synthesis of BM-derived mast cells were increased in presence of IL-4 and SCF. Histochemical staining demonstrated that granules were safranin positive. BM-derived mast cells could be activated for granule exocytosis (beta-hexosaminidase release) and lipid mediator generation (LTC4 production) via Fc(epsilon)RI after sensitization with IgE and subsequent crosslinking with multivalent antigen. In addition, mast cells derived from BM cells cultured with SCF plus IL-4 could be activated by substance P, a nonimmunologic stimulus, to release beta-hexosaminidase. The results presented indicate that IL-4 and SCF both have a prominent role in the development of mast cells from murine BM cells in vitro. Mast cells can directly be derived from BM cells in presence of SCF and IL-4 and the cultured cells show typical hallmarks of CTMC, indicating that precursor cells for CTMC may be present in BM. The described culture procedure may be useful to investigate the molecular aspects of the development of committed mast cell lineages.
    [Abstract] [Full Text] [Related] [New Search]