These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lambert-Eaton antibodies inhibit Ca2+ currents but paradoxically increase exocytosis during stimulus trains in bovine adrenal chromaffin cells.
    Author: Engisch KL, Rich MM, Cook N, Nowycky MC.
    Journal: J Neurosci; 1999 May 01; 19(9):3384-95. PubMed ID: 10212298.
    Abstract:
    Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease that affects neurotransmitter release at peripheral synapses. LEMS antibodies inhibit Ca2+ currents in excitable cells, but it is not known whether there are additional effects on stimulus-secretion coupling. The effect of LEMS antibodies on Ca2+ currents and exocytosis was studied in bovine adrenal chromaffin cells using whole-cell voltage clamp in perforated-patch recordings. Purified LEMS IgGs from five patients inhibited N- and P/Q-type Ca2+ current components to different extents. The reduction in Ca2+ current resulted in smaller exocytotic responses to single depolarizing pulses, but the normal relationship between integrated Ca2+ entry and exocytosis (Enisch and Nowycky, 1996) was preserved. The hallmark of LEMS is a large potentiation of neuromuscular transmission after high-frequency stimulation. In chromaffin cells, stimulus trains can induce activity-dependent enhancement of the Ca2+-exocytosis relationship. Enhancement during trains occurs most frequently when pulses are brief and evoke very small amounts of Ca2+ entry (Engisch et al., 1997). LEMS antibody treatment increased the percentage of trains eliciting enhancement through two mechanisms: (1) by reducing Ca2+ entry and (2) through a Ca2+-independent effect on the process of enhancement. This leads to a paradoxical increase in the amount of exocytosis during stimulus trains, despite inhibition of Ca2+ currents.
    [Abstract] [Full Text] [Related] [New Search]