These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of 14-3-3 with a nonphosphorylated protein ligand, exoenzyme S of Pseudomonas aeruginosa. Author: Masters SC, Pederson KJ, Zhang L, Barbieri JT, Fu H. Journal: Biochemistry; 1999 Apr 20; 38(16):5216-21. PubMed ID: 10213629. Abstract: The 14-3-3 proteins are a family of conserved, dimeric proteins that interact with a diverse set of ligands, including molecules involved in cell cycle regulation and apoptosis. It is well-established that 14-3-3 binds to many ligands through phosphoserine motifs. Here we characterize the interaction of 14-3-3 with a nonphosphorylated protein ligand, the ADP-ribosyltransferase Exoenzyme S (ExoS) from Pseudomonas aeruginosa. By using affinity chromatography and surface plasmon resonance, we show that the zeta isoform of 14-3-3 (14-3-3zeta) can directly bind a catalytically active fragment of ExoS in vitro. The interaction between ExoS and 14-3-3zeta is of high affinity, with an equilibrium dissociation constant of 7 nM. ExoS lacks any known 14-3-3 binding motif, but to address the possibility that 14-3-3 binds a noncanonical phosphoserine site, we assayed ExoS for protein-bound phosphate by using mass spectrometry. No detectable phosphoproteins were found. A phosphopeptide ligand of 14-3-3, pS-Raf-259, was capable of inhibiting the binding of 14-3-3 to ExoS, suggesting that phosphorylated and nonphosphorylated ligands may share a common binding site, the conserved amphipathic groove. It is conceivable that 14-3-3 proteins may bind both phosphoserine and nonphosphoserine ligands in cells, possibly allowing kinase-dependent as well as kinase-independent regulation of 14-3-3 binding.[Abstract] [Full Text] [Related] [New Search]