These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interaction between medullary and spinal delta1 and delta2 opioid receptors in the production of antinociception in the rat.
    Author: Hurley RW, Grabow TS, Tallarida RJ, Hammond DL.
    Journal: J Pharmacol Exp Ther; 1999 May; 289(2):993-9. PubMed ID: 10215679.
    Abstract:
    Previous work supports the existence of two types of delta opioid receptor (delta1 and delta2) and a role of both subtypes in the spinal cord and the ventromedial medulla (VMM) in the production of antinociception. Although it is well established that spinal and supraspinal mu opioid receptors interact in a synergistic manner to produce antinociception, little is known about the interaction of delta opioid receptors. This study used isobolographic analysis to determine how delta1 and delta2 opioid receptors in the VMM interact with their respective receptors in the spinal cord to produce antinociception. Concurrent administration of the delta1 opioid receptor agonist [D-Pen2,D-Pen5]enkephalin at spinal and supraspinal sites in a fixed-dose ratio produced antinociception in an additive manner in the tail-flick test. In contrast, concurrent administration of very low doses of the delta2 opioid receptor agonist [D-Ala2,Glu4]deltorphin at spinal and medullary sites produced antinociception in a synergistic manner. However, as the total dose of [D-Ala2,Glu4]deltorphin increased, this interaction converted to additivity. These observations suggest that different mechanisms mediate the antinociceptive effects of different doses of delta2 opioid receptor agonists. The difference in the nature of the interaction produced by delta1 and delta2 opioid receptor agonists provides additional evidence for the existence of different subtypes of the delta opioid receptor. These results also suggest that delta2 opioid receptor agonists capable of crossing the blood-brain barrier will be more potent or efficacious analgesics than delta1 opioid receptor agonists after systemic administration.
    [Abstract] [Full Text] [Related] [New Search]