These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 27774.
    Author: Romão CV, Liu MY, Le Gall J, Gomes CM, Braga V, Pacheco I, Xavier AV, Teixeira M.
    Journal: Eur J Biochem; 1999 Apr; 261(2):438-43. PubMed ID: 10215854.
    Abstract:
    Desulfoferrodoxin (Dfx), a small iron protein containing two mononuclear iron centres (designated centre I and II), was shown to complement superoxide dismutase (SOD) deficient mutants of Escherichia coli [Pianzzola, M.J., Soubes M. & Touati, D. (1996) J. Bacteriol. 178, 6736-6742]. Furthermore, neelaredoxin, a protein from Desulfovibrio gigas containing an iron site similar to centre II of Dfx, was recently shown to have a significant SOD activity [Silva, G., Oliveira, S., Gomes, C.M., Pacheco, I., Liu, M.Y., Xavier, A.V., Teixeira, M., Le Gall, J. & Rodrigues-Pousada, C. (1999) Eur. J. Biochem. 259, 235-243]. Thus, the SOD activity of Dfx isolated from the sulphate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 was studied. The protein exhibits a SOD activity of 70 U x mg-1, which increases approximately 2.5-fold upon incubation with cyanide. Cyanide binds specifically to Dfx centre II, yielding a low-spin iron species with g-values at 2.27 (g perpendicular) and 1.96 (g parallel). Upon reaction of fully oxidized Dfx with the superoxide generating system xanthine/xanthine oxidase, Dfx centres I and II become partially reduced, suggesting that Dfx operates by a redox cycling mechanism, similar to those proposed for other SODs. Evidence for another SOD in D. desulfuricans is also presented - this enzyme is inhibited by cyanide, and N-terminal sequence data strongly indicates that it is an analogue to Cu,Zn-SODs isolated from other sources. This is the first indication that a Cu-containing protein may be present in a sulphate-reducing bacterium.
    [Abstract] [Full Text] [Related] [New Search]