These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts. Author: Hricovíni M, Guerrini M, Bisio A. Journal: Eur J Biochem; 1999 May; 261(3):789-801. PubMed ID: 10215897. Abstract: A complex of the synthetic tetrasaccharide AGA*IM [GlcN, 6-SO3-alpha(1-4)-GlcA-beta(1-4)-GlcN,3, 6-SO3-alpha(1-4)-IdoA-alphaOMe] and the plasma protein antithrombin has been studied by NMR spectroscopy. 1H and 13C chemical shifts, three-bond proton-proton (3JH-H) and one-bond proton-carbon coupling constants (1JC-H) as well as transferred NOEs and rotating frame Overhauser effects (ROEs) were monitored as a function of the protein : ligand molar ratio and temperature. Considerable changes were observed at both 20 : 1 and 10 : 1 ratios (AGA*IM : antithrombin) in 1H as well as 13C chemical shifts. The largest changes in 1H chemical shifts, and the linewidths, were found for proton resonances (A1, A2, A6, A6', A1*, A2*, A3*, A4*) in GlcN, 6-SO3 and GlcN,3,6-SO3 units, indicating that both glucosamine residues are strongly involved in the binding process. The changes in the linewidths in the IdoA residue were considerably smaller than those in other residues, suggesting that the IdoA unit experienced different internal dynamics during the binding process. This observation was supported by measurements of 3JH-H and 1JC-H. The magnitude of the three-bond proton-proton couplings (3JH1-H2 = 2.51 Hz and 3JH4-H5 = 2.23 Hz) indicate that in the free state an equilibrium exists between 1C4 and 2S0 conformers in the ratio of approximately 75 : 25. The chair form appears the more favourable in the presence of antithrombin, as inferred from the magnitude of the coupling constants. In addition, two-dimensional NOESY and ROESY experiments in the free ligand, as well as transferred NOESY and ROESY spectra of the complex, were measured and interpreted using full relaxation and conformational exchange matrix analysis. The theoretical NOEs were computed using the geometry of the tetrasaccharide found in a Monte Carlo conformational search, and the three-dimensional structures of AGA*IM in both free and bound forms were derived. All monitored NMR variables, 1H and 13C chemical shifts, 1JC-H couplings and transferred NOEs, indicated that the changes in conformation at the glycosidic linkage GlcN, 6-SO3-alpha(1-4)-GlcA were induced by the presence of antithrombin and suggested that the receptor selected a conformer different from that in the free state. Such changes are compatible with the two-step model [Desai, U.R., Petitou, M., Bjork, I. & Olson, S. (1998) J. Biol. Chem. 273, 7478-7487] for the interaction of heparin-derived oligosaccharides with antithrombin, but with a minor extension: in the first step a low-affinity recognition complex between ligand and receptor is formed, accompanied by a conformational change in the tetrasaccharide, possibly creating a complementary three-dimensional structure to fit the protein-binding site. During the second step, as observed in a structurally similar pentasaccharide [Skinner, R., Abrahams, J.-P., Whisstock, J.C., Lesk, A.M., Carrell, R.W. & Wardell, M.R. (1997) J. Mol. Biol. 266, 601-609; Jin, L., Abrahams, J.-P., Skinner, R., Petitou, M., Pike, R. N. & Carrell, R.W. (1997) Proc. Natl Acad. Sci. USA 94, 14683-14688], conformational changes in the binding site of the protein result in a latent conformation.[Abstract] [Full Text] [Related] [New Search]