These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of heterogeneity of apoptotic fragments of poly (ADP-ribose) polymerase in MDA-MB-468 breast cancer cells: two-dimensional gel analysis. Author: Prasad SC, Soldatenkov V, Notario V, Smulson M, Dritschilo A. Journal: Electrophoresis; 1999 Mar; 20(3):618-25. PubMed ID: 10217178. Abstract: Caspace-mediated proteolysis of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) (EC 2.4, 2.30) is a biochemical marker of cell death in response to various apoptotic stimuli. Anti-PARP antibodies identifying the 89 kDa polypeptide from the C-terminus as well as the 113 kDa native enzyme are often used to demonstrate evidence of apoptosis-associated, interleukin converting enzyme (ICE)-mediated limited cleavage. Recent evidence points to redundancy of caspases, heterogeneity of their cleavage sites, and a possibility of generating distinct context-specific, and cell-specific PARP fragments. In the present study, we employed antibodies directed to multiple sites in PARP and probed two-dimensionally resolved proteins of the estrogen receptor negative MDA-MB-468 breast tumor cells, induced to undergo apoptosis by ionizing radiation (IR). Our results revealed that the 24 kDa apoptotic fragment of PARP, from the N-terminus, consists of at least three isoforms, located at a p/more basic than the full length enzyme. We also report a hitherto unrecognized feature of an anti-PARP antiserum, VIC-5, detecting both the 89 kDa and the 24 kDa caspase-generated fragments of PARP. Thus, application of two-dimensional electrophoresis combined with antisera directed to multiple sites would be valuable in distinguishing PARP cleavage site- and inhibitor specificities of proteases during apoptosis.[Abstract] [Full Text] [Related] [New Search]