These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuroprotective role of Na+/myo-inositol cotransporter against veratridine cytotoxicity.
    Author: Yamashita T, Yamauchi A, Miyai A, Taniguchi M, Yoshimine T, Tohyama M.
    Journal: J Neurochem; 1999 May; 72(5):1864-70. PubMed ID: 10217262.
    Abstract:
    Na+/myo-inositol cotransporter has been shown to protect cells from the perturbing effects of hypertonic stress by the accumulation of myo-inositol. Here we report a regulatory mechanism for the cotransporter. Induction of myo-inositol cotransporter mRNA was observed after exposure to veratridine, a voltage-gated sodium channel opener. The veratridine-elicited induction was inhibited when Na+ was eliminated from the bath, although calcium chelation failed to modify the gene expression. Veratridine evoked an accumulation of Na+ in the cells, which paralleled the abundance of the mRNA. These results strongly suggested that an increase in Na+ influx due to sodium channel opening affected transcription of the cotransporter gene. Activity of the myo-inositol cotransporter was also up-regulated after veratridine exposure. To clarify the possible roles of myoinositol accumulation under veratridine exposure, we next examined the neurotoxic effects of veratridine when myo-inositol uptake was blocked. Neither 30 microM veratridine nor 500 microM 2-O,C-methylene myo-inositol, a competitive inhibitor of myo-inositol, elicited apparent cytotoxicity. However, a combination of these agents markedly increased cytotoxicity in culture, suggesting that an adequate amount of myo-inositol was necessary when the cells were stimulated with veratridine.
    [Abstract] [Full Text] [Related] [New Search]