These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Aluminum enhances iron uptake and expression of neurofibrillary tangle protein in neuroblastoma cells.
    Author: Abreo K, Abreo F, Sella ML, Jain S.
    Journal: J Neurochem; 1999 May; 72(5):2059-64. PubMed ID: 10217285.
    Abstract:
    Aluminum (Al) and iron (Fe) have been implicated as playing a toxic role in the pathologic lesions of Alzheimer's disease. In the following report we describe the uptake and toxicity of Al, the effect of Al on Fe uptake, and the expression of neurofibrillary tangle (NFT) protein in murine neuroblastoma cells (Neuro 2A). Significant cell Al uptake and inhibition of cell growth were seen in Neuro 2A cells at 24, 48, 72, and 96 h after plating in medium containing Al transferrin (Al-Tf) and Al citrate. Al-loaded Neuro 2A cells showed increased rates of 59Fe and 125I-Tf uptake and total cellular Fe content at 24, 48, 72, and 96 h after plating compared with control cultures. Significant increases in NFT protein staining were detected in Al-exposed cells at 72 and 96 h in culture compared with controls. The intensity of NFT staining in Al-loaded cells was directly proportional to the time in culture. There was no difference in malonyldialdehyde levels measured in control versus Al-loaded Neuro 2A cells. These results suggest that the accumulation of Al in Neuro 2A cells resulted in increased uptake of Fe, inhibition of cell growth, and expression of NFT protein, partially mimicking the pathological hallmarks of Alzheimer's disease. This model system may also be applicable for Al-induced dialysis dementia, because the Al concentrations at which cell toxicity occurred can be found in dialysis patients.
    [Abstract] [Full Text] [Related] [New Search]