These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen-derived free radical-induced vasoconstriction by thromboxane A2 in aorta of the spontaneously hypertensive rat. Author: Hibino M, Okumura K, Iwama Y, Mokuno S, Osanai H, Matsui H, Toki Y, Ito T. Journal: J Cardiovasc Pharmacol; 1999 Apr; 33(4):605-10. PubMed ID: 10218731. Abstract: This study was performed to clarify the mechanism of vasoconstriction induced by oxygen-derived free radicals in spontaneously hypertensive rats. The isometric tension of aortic rings from spontaneously hypertensive rats and Wistar-Kyoto rats was measured in Krebs-Henseleit solution. Oxygen-derived free radicals were generated by mixing xanthine and xanthine oxidase. The removal of endothelium enhanced the contractions induced by oxygen-derived free radicals. The inhibition of nitric oxide production with NG-nitro-L-arginine methyl ester (10(-4) M) enhanced the contractions. Treatment with the thromboxane A2 (TXA2) synthetase inhibitor OKY-046 (10(-4) M) or RS-5186 (10(-4) M) markedly reduced the contractions. Treatment with the cyclooxygenase inhibitor indomethacin (10(-5) M) and a TXA2/prostaglandin H2 (PGH2) receptor antagonist, ONO-3708 (10(-6) M), completely abolished the oxygen-derived free radical-induced contractions. In contrast, treatment with the PGI2 synthetase inhibitor tranylcypromine (10(-4) M) did not attenuate the oxygen-derived free radical-induced contractions. Whether endothelium was present or not, the release of TXB2, PGE2, and 6-keto-PGF1alpha, but not PGF2alpha, was increased by the production of oxygen-derived free radicals. Catalase and the hydroxyl radical scavenger deferoxamine plus mannitol markedly inhibited the oxygen-derived free radical-induced contractions. These results suggest that oxygen-derived free radical-induced vasoconstriction in spontaneously hypertensive rat aorta is caused by TXA2 and PGH2 released in smooth muscle.[Abstract] [Full Text] [Related] [New Search]