These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: D-Fenfluramine induces serotonin-mediated Fos expression in corticotropin-releasing factor and oxytocin neurons of the hypothalamus, and serotonin-independent Fos expression in enkephalin and neurotensin neurons of the amygdala.
    Author: Javed A, Kamradt MC, Van de Kar LD, Gray TS.
    Journal: Neuroscience; 1999 Mar; 90(3):851-8. PubMed ID: 10218785.
    Abstract:
    The neurotransmitters expressed by neurons activated by D-fenfluramine (5 mg/kg, i.p.) were identified in the hypothalamus, amygdala and bed nucleus of the stria terminalis. Induction of Fos immunoreactivity following D-fenfluramine injection was used as an index of neuronal activation. To test whether D-fenfluramine activated neurons by releasing serotonin from the serotonergic nerve terminals, rats were pretreated with fluoxetine (10 mg/kg, i.p.), a serotonin reuptake inhibitor that prevents the release of serotonin stimulated by D-fenfluramine, 12 h before D-fenfluramine injection. The approximate percentages of peptidergic neurons that contained Fos immunoreactivity after D-fenfluramine administration were 94% of corticotropin-releasing factor and 22% of oxytocin cells in the paraventricular nucleus of the hypothalamus, 6% of oxytocin cells in the supraoptic nucleus of the hypothalamus, 36% of enkephalin and 15% of neurotensin cells in the central amygdaloid nucleus, and 19% of enkephalin and 9% of neurotensin cells in the bed nucleus of the stria terminalis. Fluoxetine pretreatment blocked Fos expression in corticotropin-releasing factor- and oxytocin-expressing cells in the hypothalamus, but not in enkephalin-and neurotensin-expressing cells located in the bed nucleus of the stria terminalis and central amygdaloid nucleus. D-Fenfluramine did not induce Fos immunoreactivity in vasopressin-, thyrotropin-releasing hormone-, somatostatin- and tyrosine hydroxylase-containing cells in the hypothalamus, and corticotropin-releasing factor-expressing cells in the central amygdaloid nucleus and bed nucleus of the stria terminalis. These results show that D-fenfluramine stimulates corticotropin-releasing factor- and oxytocin-expressing cells in the hypothalamus via serotonin release. The enkephalin- and neurotensin-expressing cells in the amygdala are activated by D-fenfluramine via non-serotonergic mechanisms. Induction of Fos expression by D-fenfluramine in restricted populations of cells suggests a selective activation of neuronal circuitry that is likely to be involved in the appetite suppressant effects of D-fenfluramine.
    [Abstract] [Full Text] [Related] [New Search]