These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of atrazine degradation by cyanazine and exogenous nitrogen in bacterial isolate M91-3. Author: Gebendinger N, Radosevich M. Journal: Appl Microbiol Biotechnol; 1999 Mar; 51(3):375-81. PubMed ID: 10222586. Abstract: A variety of s-triazine herbicides and nitrogen fertilizers frequently occur as co-contaminants at pesticide manufacturing and distribution facilities. The degradation of atrazine and cyanazine by the bacterial isolate M91-3 was investigated in washed-cell suspensions and crude cellular extracts. Cyanazine competitively inhibited atrazine degradation. The maximum atrazine degradation rate (Vmax) was 41 times higher and the half-saturation constant for the inhibitor (Ki) was 1.3 times higher in the crude cellular extract than in the washed-cell suspension, suggesting that cellular uptake influenced degradation of the s-triazines. Cultures that had received prior exposure to atrazine and simazine exhibited comparable atrazine degradation rates, while cells exposed to cyanazine, propazine, ametryne, cyanuric acid, 2-hydroxyatrazine, biuret, and urea exhibited a lack of atrazine-degradative activity. Growth in the presence of exogenous inorganic nitrogen inhibited subsequent atrazine-degradative activity in washed-cell suspensions, suggesting that regulation of s-triazine and nitrogen metabolism are linked in this bacterial isolate. These findings have significant implications for the environmental fate of s-triazines in agricultural settings since these herbicides are frequently applied to soils receiving N fertilizers. Furthermore, these results suggest that bioremediation of s-triazine-contaminated sites (common at pesticide distribution facilities in the cornbelt) may be inhibited by the presence of N fertilizers that occur as co-contaminants.[Abstract] [Full Text] [Related] [New Search]