These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative effects of phenylenebis(methylene)selenocyanate isomers on xenobiotic metabolizing enzymes in organs of female CD rats.
    Author: Sohn OS, Fiala ES, Upadhyaya P, Chae YH, El-Bayoumy K.
    Journal: Carcinogenesis; 1999 Apr; 20(4):615-21. PubMed ID: 10223189.
    Abstract:
    The cancer chemopreventive agent 1,4-phenylenebis(methylene)selenocyanate (p-XSC) inhibits various chemically induced tumors in laboratory animals. We examined the effects of p-XSC and its o- and m-isomers on xenobiotic metabolizing enzymes in vivo. Six-week-old female CD rats were given diets containing o-, m- or p-XSC (5 or 15 p.p.m. as Se), or equimolar amounts (30 or 90 micromol/kg) of 1,4-phenylenebis(methylene)thiocyanate (p-XTC, the sulfur analog of p-XSC) for 1 week. At termination, substrate-specific assays for enzymes of xenobiotic metabolism in various organs were performed. Overall, o-XSC was a more potent enzyme inducer than m- or p-XSC. In hepatic microsomes, o-XSC significantly induced CYP2E1 as detected by increased N-nitrosodimethylamine N-demethylase activity and also by western blot. The activities of CYP1A1 (ethoxyresorufin-O-dealkylase) and CYP1A2 (methoxyresorufin-O-dealkylase) were not affected, but a significant decrease in the activity of CYP2B1 (pentoxyresorufin-O-dealkylase) was observed at the 15 p.p.m. Se level of o-XSC. With the m- and p-XSC isomers or with p-XTC, no significant effect on phase I enzymes was noted. Hepatic UDP-glucuronosyltransferase activities were increased 1.5- to 2-fold by all three XSC isomers at the higher dose level (15 p.p.m. Se), but not by p-XTC; o-XSC again was the most effective. All three XSC isomers were found to increase the alpha, mu and pi isozymes of glutathione S-transferases in the liver, kidney, lung, colon and mammary gland to varying degrees. The XSC isomers also significantly increased glutathione peroxidase in the colon and mammary gland. Although o-XSC was the most powerful in stimulating the enzyme activities, especially in the liver, atomic absorption spectrometry showed that the selenium levels were highest in organs of rats given p-XSC. Thus, the level of tissue distribution of the XSC isomers and/or their metabolite(s) does not correlate with their effects on enzyme activities. The present study demonstrates that individual XSC isomers are capable of modulating specific phase I and/or phase II enzymes involved in the activation and/or detoxification of chemical carcinogens, and provides some mechanistic basis for the cancer chemopreventive efficacy of these organoselenium compounds at the stage of tumor initiation.
    [Abstract] [Full Text] [Related] [New Search]