These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: lir-2, lir-1 and lin-26 encode a new class of zinc-finger proteins and are organized in two overlapping operons both in Caenorhabditis elegans and in Caenorhabditis briggsae.
    Author: Dufourcq P, Chanal P, Vicaire S, Camut E, Quintin S, den Boer BG, Bosher JM, Labouesse M.
    Journal: Genetics; 1999 May; 152(1):221-35. PubMed ID: 10224256.
    Abstract:
    lin-26, which encodes a unique Zn-finger protein, is required for differentiation of nonneuronal ectodermal cells in Caenorhabditis elegans. Here, we show that the two genes located immediately upstream of lin-26 encode LIN-26-like Zn-finger proteins; hence their names are lir-1 and lir-2 (lin-26 related). lir-2, lir-1, and lin-26 generate several isoforms by alternative splicing and/or trans-splicing at different positions. On the basis of their trans-splicing pattern, their intergenic distances, and their expression, we suggest that lir-2, lir-1, and lin-26 form two overlapping transcriptional operons. The first operon, which is expressed in virtually all cells, includes lir-2 and long lir-1 isoforms. The second operon, which is expressed in the nonneuronal ectoderm, includes short lir-1 isoforms, starting at exon 2 and lin-26. This unusual genomic organization has been conserved in C. briggsae, as shown by cloning the C. briggsae lir-2, lir-1, and lin-26 homologs. Particularly striking is the sequence conservation throughout the first lir-1 intron, which is very long in both species. Structural conservation is functionally meaningful as C. briggsae lin-26 is also expressed in the nonneuronal ectoderm and can complement a C. elegans lin-26 null mutation.
    [Abstract] [Full Text] [Related] [New Search]